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OD-structures consisting of equivalent layers are first characterized as having pairs of adjacent 
layers which are all equivalent. Then a slightly more general condition--the 'vicinity condition'-- 
is formulated which is satisfied not only by all ordered structures but also by all OD-structures. 
Part ial  operations (POs) are seen to be of fundamental importance for characterizing the symmetry 
properties of OD-structures and the set of POs  of a certain structure is called an OD-groupoid. 
OD-structures of the same substance, built of the same kind of layers with the same kinds of pairs 
of adjacent layers are said to belong to the same family, the corresponding OD-groupoids to the 
same OD-groupoid family. Twins of one particular type are described as special members of families 
of OD-structures. A report on the deduction of a complete list of OD-groupoid families is given, 
and the resulting numbers of such families with different symmetry characteristics are listed in 
tables. There are 333 in all. 

1. I n t r o d u c t i o n  

In  earlier papers  (Dornberger-Schiff,  1956,1957,1959c) 
one of us has described some examples of wha t  we 
propose to call OD-structures. In  such s t ructures  equi- 
valent  par t s  lie in equivalent  vicinities bu t  there need 
not  be perfect  long-range order. 

I t  is the  aim of this paper  to report  on results of 
theoretical  inves t iga t ions- - to  be published in full 
e lsewhere--concerning one par t icu lar  class of OD- 
s t ruc tu res - - s t ruc tu res  which consist of equivalent* 
layers with two-fold periodicity, piled on top of one 
another  in such a way  t h a t  they  all have two l inearly 
independent  t rans la t ional  vectors a and  b in common 
which correspond to this periodicity. A p a r t  f rom these 
t ranslat ions and  their  l inear combinations ma  + n b  an 
OD-s t ruc ture  need not  possess any  (total) s y m m e t r y  
operation. Structures  wi th  one-dimensional position 
disorder also belong to this class. 

I n  these in t roduc tory  remarks  we shall refer to 
s t ructures  in which all pairs of ad jacent  layers are 
equivalent.  I n  pa r t  3 of this paper  we shah see 
however,  t h a t  the  discussion of ordered s t ructures  
suggests a somewhat  wider definition of wha t  we shall 
call the  'vicini ty condition' .  This will then  be used to 
t race out  the concept of an OD-s t ruc ture .  

As all layers of the s t ructures  discussed are equiv- 
alent,  there mus t  exist par t ia l  repeat ing operations~ 
which t ransform any  one of these layers either into 
itself or into any  other  layer.  Such par t ia l  operations 
will be called P O s  for short.  

We shall not  consider any  par t ia l  operations refer- 
ring to par ts  of a layer  (or of layers) only. Thus any  

. . . . . . . . . . . . . . .  

* ttere and in the following the term 'equivalent' stands 
for 'congruent or enantiomorphous'. 

t For a discussion of the term 'repeating operation' see 
M. J. Buerger (1956) p. 3 ff. 

repeat ing operat ion under  consideration m a y  be de- 
scribed by  a P O  or by  combinations of POs .  

A P O  is fully character ized by  

(a) the  t rans format ion  of space, and 
(b) the  layer  which is to be t ransformed.  

The t ransformat ion  need not  bring any  other  layer  
into coincidence with any  pa r t  of the s t ructure .  

Amongs t  the  s t ructures  consisting of equivalent  
layers with equivalent  pairs of ad jacent  layers  we m a y  
distinguish between 

(a) ful ly ordered structures, i.e. s t ructures  in which 
any  t ransformat ion  characterizing ~ P O  is itself 
a (total) s y m m e t r y  operat ion of the  s t ructure,  
and 

(fl) OD-structures in which proper  P O s  exist, i.e. 
P O s  characterized by  t ransformat ions  which are 
not  themselves (total) s y m m e t r y  operat ions of 
the  s t ructure.  

I t  is convenient to number  the layers according to 
their  posit ion: . . . ,  L~2, L~, L0, L1, L2, L3, . . . .  To de- 
note P O s  we shall use small letters with the  numbers  
of the  layer  t ransformed and of the  result ing layer  as 
prefixes. The symbol  ~,qa would thus  denote a P O  
t ransforming Lp into Lz. To each P O  ~, qa there exists 
an inverse operat ion which is given the  symbol q. ~a -1. 

In  accordance with an earlier suggestion (Dornber- 
ger-Schiff, 1956) to call the  plane space group of the 
single layer  the  A - s y m m e t r y  of the  s t ructure,  P O s  
~,~a, t ransforming any  layer  Lp into itself are to be 
called ~t-POs. The set of ~, ~a for a par t icular  layer  L~ 
forms a group, namely  one of the  80 plane space 
groups in three dimensions (see also Holser,  1958). 
A P O  ~,p+la or ~,p- la  t ransforming a layer  L~ into 
an adjacent  layer (Lp+l or Lp-1) will be called a (~-PO. 
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The complete set of POs does not form a group 
(in the mathematical sense), as two POs p,qa and ~,~b 
may not be combined in this order, unless q= r, that  
is unless the layer Lq into which the original layer is 
transformed by the first PO is identical with the 
layer L~ to be transformed by the second PO. The 
POs do, however, form a groupoid as defined by 
Brandt (1927).* (A fuller mathematical treatment is 
to be given by the authors in a paper in preparation.) 

Obviously the complete set of POs of a structure 
may be generated from all 2- and a-POs. For example, 
any PO ~,3a may be generated as combination or 
'product' of arbitrary a-POs ~,2b and %3c, multiplied 
by a suitable 2-PO 3,sd. 

As we know, an ordered structure is completely 
determined by the coordinates x~, yj, zj of the atoms 
of an asymmetric unit, together with all symmetry 
operations. Similarly, an OD-structure is completely 
determined by the coordinates xj, yj, zj of the atoms 
of an asymmetric unit of a layer together with all POs. 

In the case of an OD-structure it is, however, not 
only extremely difficult but also--for many purposes 
--quite  unnecessary to carry out a complete structure 
determination. Practically all questions of chemistry 
--atomic distances, coordination numbers and usually 
coordination polyhedra and bond angles--may be 
answered, if the structure of a single layer and the 
relative position of two adjacent layers are known, 
provided that  not only all layers but also all pairs 
of adjacent layers are equivalent. With these data a 
whole set of geometrically possible structures is 
compatible, unless they define a fully ordered struc- 
ture. Such a set is called a family of OD-structures 
or OD-family. 

A well-known example of such an OD-family are 
the various (ordered and disordered) SiC-structures: 

A single layer consists of 
Si-atoms in (000) [ and points equivalent with respect 
C-atoms in (00z0) ~ to translations ma + nb .  

Pairs of adjacent layers are equivalent to a pair 
consisting of the layer just described and the layer 
with 

Si-atoms in (~, 9 1) 
x' and equivalent points. C-atoms in (½, ~,2 1 +z0) f 

(All coordinates referred to hexagonal axes, with the 
unit in the c-direction taken as c/n (for ordered 
structures) where c is the lattice constant and n the 
number of layers per repeat in the c-direction.) 

For the determination of an OD-family it is suf- 
ficient to determine 

(i) all ;t-POs p. pa transforming one particular layer, 
Lp say, into itself, 

(if) one particular (r-PO ~,p+lb transforming Lp 
into Lp+l, 

* Our thanks  are due to  Prof.  H.  Wie land t  for drawing 
our  a t t en t ion  to this ma thema t i ca l  concept .  

(iii) the coordinates x~, yj, z~ of the atoms of the 
asymmetric unit. 

The set of OD-groupoids corresponding to an OD- 
family is called a family of OD-groupoids. 

I t  is the aim of the present investigations, to put 
at the disposal of the crystallographer the means--  
corresponding in many ways to the main tables of the 
International Tables .for X-ray Crystallography~for 
determining the family of OD-groupoids of a structure 
from its X-ray data. 

Other authors have been interested in questions of 
the statistical characterization of samples of disordered 
OD-structures within their particular family. (See e.g. 
Hendricks & Teller, 1942; Jagodzinski, 1949a, b, c, 
1954; Wilson, 1942). Such questions are, however. 
outside the scope of this paper. 

2.  R e m a r k s  o n  P O s  

The fact that  the layers transformed by POs are 
periodic in two dimensions only, limits the range of 
transformations which may characterize POs to those 
given in Table 1. 

In this table a distinction has been made between 
the so called ~-POs, which transform the side of a 
layer facing upwards into a side facing upwards, and 
the so called @-POs which transform a side of a layer 
facing upwards into one facing downwards. 

Table 1. Transformations compatible with 
OD layer structures 

Transformat ions  Transformat ions  
character iz ing v - P O s  character iz ing @-POs 

. . . . . . . . . .  

t rans la t ions  centre  of inversion 

rotation,~ and screw m o v e m e n t s  inversion axes  
(axes perpendicular  to  layer  plane) 

mirror  and glide planes 
(parallel to layer  plane) 

mirror  and glide planes 2-fold ro ta t ions  and screw 
(perpendicular  to  layer  plane) m o v e m e n t s  

(parallel to layer  plane) 

Thus in symbols (with the layer plane parallel to 
x and y): 

~-POs convert x, y, z into x', y', C+z 
@-POs convert x, y, z into x', y', C - z  

where x' and y' are functions of x and y only; C may 
be any constant. 

Thus the rules for the combination ('multiplica- 
tion') of T- and @-POs are given by the follm~dng 

Multiplication table 

~:1 T @ 
@1 @ T 
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If two pairs of adjacent  layers, e.g. Lv, Lv+l and 
Lq, Lq+~ are equivalent  then  there exists 

ei ther a P O  v,Qa characterized by  the same trans- 
format ion as a P O  v+~,q+xa 

or a P O  v+~, qb characterized by  the same transfor- 
mat ion  as a P O  v,q+~b. 

This ra ther  involved s ta tement  m a y  be expressed in 
a more concise form with the help of the term con- 
t inuation: If v,qa and r,~b are characterized by  the 
same t ransformat ion and differ only by  the layers to 
which they  apply,  we call v, qa a cont inuat ion of ~,sb 
and vice versa;  in symbols  

p,  qa < > r, sb 

o r  
r, sb < ) p , q a .  

We shall  f requent ly  use the same main  let ter  for 
different  P O s  which are continuat ions of one another,  
e .g .  

p,qa < > r, sa. 

From the defini t ion of ~- and Q-POs follows: 

The cont inuat ion of a ~-PO is a T-PO, the con- 
t inua t ion  of a ~-PO is a Q-PO; 

if v,q~<-->-~,~T then  r - p = s - q  (see Fig. l(a)) 
if v,q~ +--" ~.,Q then r - p = q - s  (see Fig. l(b)) . 

I 

I q , 

q ,  w 

I 

r i f i 

i 

p ' p ' 

I 

I 

p,q~" ~ r,s ~ p, q f  <--' r,z f 

Fig.  l (a )  a n d  (b) lr- a n d  0 - P O s  a n d  t h e i r  c o n t i n u a t i o n s .  

Thus  the pairs Lv, Lp+l and Lq, Lq+l are equivalent ,  
if there exists ei ther a P O  

p , q T  < > p + l , q + l T  

and/or a PO 

p+I,zQ < > p,e+1~. 

In particular, for p--I and q--2 follows: the pairs 
LIL2 and L2L3 are equivalent, if there exists either a 
PO 

1 ,2T  < > 2 ,3T  
and/or  a P O  

2,2Q < ~ 1,3~ • 

3. T h e  v i c i n i t y  c o n d i t i o n  as  g e n e r a l i z a t i o n  
f r o m  fu l ly  o r d e r e d  s t r u c t u r e s  

Ful ly  ordered structures are necessarily periodic in 
three dimensions. The reverse is also t rue:  Any  struc- 
ture periodic in three dimensions m a y  be thought  of 
as a ful ly  ordered structure consisting of equivalent  
layers,  piled on top of one another  in a certain way. 
Actually,  this manner  of looking at  a ful ly  ordered 
structure is more in keeping with the physical  causes 
of the existence of such structures than  the description 
making  use of periodicity,  as the pe r iod ic i ty - -a  long 
range proper ty  of the s t ruc ture- - resul t s  from short- 
range forces of interaction.  

The layers themselves can be thought  of as con- 
sisting of rods periodic in one dimension only, ar- 
ranged according to forces of interact ion between 
them, and the rods as consisting of bricks l imited in 
all directions. This will cer tainly be useful when treat- 
ing structures of higher degree of disorder. Then the 
te rm P O  will have to be defined in a more general 
way. For the present purposes it is sufficient to t reat  
the single layers as prefabricated elements out of which 
the structure is to be built .  

Actual ly  we can unders tand  the format ion of a ful ly 
ordered structure from equivalent  layers, even if the 
range of the forces of interact ion is so l imited tha t  the 
energy of interact ion between layers which are not 
immedia te  neighbours is small  in comparison with 
the energy of interact ion between adjacent  layers.  

Then equivalent  pairs of layers will p robab ly  be 
formed in different parts of the structure, as a certain 
relative arrangement of two adjacent layers which is 
energetically favourable in one part of the structure 
will be equally favourable in any other part of the 
structure. 

Further, we have to expect the relative arrange- 
ment of adjacent layers to be such that translationally 
equivalent asymmetric units of one layer have trans- 
lationally equivalent vicinities in an adjacent layer. 
This would then lead necessarily to an arrangement of 
layers with common translations maWnb. 

These conditions to be expected are met by any 
fully ordered structure built of equivalent layers. 
They are also met by structures not fully ordered, 
which we named OD-structures (order-disorder struc- 
tures). Before formulating them more precisely, it is 
convenient to look at them with the help of practical 
examples. To do so, we take the schematic representa- 
tion of a fully ordered structure of space group, Pnc2. 
It may be considered as built of equivalent layers and 
with all pairs of adjacent layers equivalent according 
to Fig. 2(a), with the layer planes parallel to ab, or 
according to Figs. 3(a) and 4(a) with the layer planes 
parallel to ac. 

In each of the Figures the layers are indicated as 
L1, L2, . . . .  

There is only one poss ib i l i t y - - tha t  indicated in 
Fig. 2(a)--of  spli t t ing this s tructure into equivalent  
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L2 

~' V ~  

Figs. 2-5. Representat ion of corresponding fully ordered (a) and OD-structures (b). 
Black triangles correspond to x = x  0, white triangles to x = T 0. 
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Fig. 2(a). Space group P n c 2 ,  split into layers parallel to ab. 
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Fig. 2(b). OD-groupoid-famfly P 1 I (2) 
{ns ,2  c2 (I)} 

corresponding to Fig. 2(a). 
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Fig. 3(a). Space group P n c 2 ,  split into layers parallel ac. 
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Fig. 3(b). OD-groupoid-family P i (I) 2 
{n~,~ (c~) l} 

corresponding to Fig. 3(a). 
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Fig. 4(a). Space group P n e 2 ,  split into layers parallel ac. 
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Fig. 4(b) .  OD-groupoid-famfly P{1 

(1) 2r} 
corresponding to Fig. 4(a). 
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Fig. 5(a). Space group Pnc2, split into layers parallel ac. 

I ~  I I ~  r 3,~ 2 

2,3 c 
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(b) 

Z . ~  . . . .  

P 1 (1) 1 
Fig. 5(b). OD-groupoid-family {1 (1) 2r} 

{1 (c~) ]} 
corresponding to Fig. 5(a). 

layers parallel to ab in such a way that each sym- 
metry operation of the space group corresponds to a 
class of POs. 

There is, however--besides those corresponding to 
Figs. 3(a) and 4(a)--one more possibility of splitting 
the structure into equivalent layers parallel to ac, 
so that  each symmetry operation of the space group 
corresponds to a class of POs; namely that  indicated 
in Fig. 5(a). Whereas, however, in all the other cases 
not only the layers but also all the pairs of adjacent 
layers are equivalent, in this case there are two classes 
of pairs of adjacent layers: the pairs L2n-1, L2n and 
the pairs L2~, L2~+1; only those pairs belonging to the 
same class are equivalent. 

The reason for this difference is as follows. We have 
seen that  the equivalence of two pairs of adjacent 
layers, e.g. of the pairs L~, L2 and L2, L3, results from 
the existence of either a PO ~,2~ or a PO ~.20 with 
a suitable continuation. Now looking at the various 
cases discussed above, we see that  in those depicted 
in Figs. 2(a), 3(a) and 4(a) there exist POs 1,2v (in 
the latter two cases as well as POs e.2~o). Thus there 
exist POs which, by having a continuation, can give 
rise to the equivalence of the pairs. In the case depicted 
in Fig. 5(a), however, there exists neither a 1,2~ nor 
a 2,2~o. So, no matter how the layer La is arranged, 
it cannot possibly lead to a pair L2, L3 equivalent to 
the pair L1, L2. 

We can now proceed to formulate the vicinity 
condition which holds in fully ordered structures as 
well as in OD-structures. I t  refers to the vicinity of 
any one layer in any adjacent layer (whereas the 
region surrounding any atom within the same layer is 
bound to be equivalent to the region surrounding any 
equivalent atom, by reason of the plane space group 
of the layer and the equivalence of layers). 

Vicinity condition 
(Part 1) Asymmetric units of one layer which are trans- 

lationally equivalent have translationally equivalent 
vicinities in any adjacent layer.* 

(Part 2) The pairs of layers Lp, Lp+l and Lz, Lq+l are 
equivalent, i.e. there exist 
either POs 

p , q T  < - - >  p + l , q + l T  

or POs 
p+l ,qO~ < > p , q + l ~  , 

if there is in the structure either a PO v,q~ or a 
PO p+l,qQ, i.e. if there exists a PO of the kind 
given on the left side of the <--+ signs at all. 

The Figs. 2(b), 3(b), 4(b) and 5(b) indicate OD-struc- 
tures corresponding to the fully ordered structures 
just described. Each of them consists of the same 
kind of layers as the corresponding ordered structure 
and the layers are linked by a-POs differing only 
by their translational components or their arrange- 
ment from the a-POs of the corresponding ordered 
structure. 

For these OD-structures the vicinity condition 
holds just as it holds for fully ordered structures. In 
the case of a fully ordered structure we could, how- 
ever, choose arbitrarily what we considered to be our 
single layer in a number of different ways. In the case 
of an OD-structure, the single layer may be defined 
as the biggest part of the structure which allows the 

* The vicinity condition (part 1) may  be weakened to read 
as follows: 'There exists a set of translations (not all col- 
linear) so tha t  asymmetr ic  units of one layer which may  be 
brought to coincidence by one of these translations have 
vicinities in any  adjacent  layer which are brought to coin- 
cidence by the same translation'.  This weakened version may  
be of practical importance for structures consisting of more 
than  one set of equivalent layers. 
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relevant* par t ia l  operations of the structure to be 
formulated as P O s  or combinat ions of POs.  In  m a n y  
cases this  definit ion determines uniquely  the single 
layer. In  some other cases of OD-structures this 
definit ion m a y  be unique only when the orientat ion 
of the layers has been fixed, or there m a y  even be 
two or more possibilities of defining the single layer  
in accordance with this definition. I t  ensures, tha t  
there is no relevant  par t ia l  operation which would 
t ransform part  of a par t icular  layer into par t  of the 
same layer,  except those operations the t ransforma- 
tions of which t ransform the whole layer into itself. 

We wish to note here in passing tha t  this formula- 
t ion of the v ic ini ty  condition allows a generalization 
of the concept of OD-structure:  We m a y  also call 
s tructures consisting of two or more sets of layers 
where only those layers belonging to the same set are 
equivalent ,  OD-structures,  if the v ic ini ty  condition 
(given above) holds. A further  generalization to cover 
structures with higher degree of (potential or actual) 
d isorder--s t ructures  composed of rods or of bricks 
finite in all d i rect ions-- is  possible but  requires a more 
general formulat ion of the vic ini ty  condition. 

In  the case of structures consisting of periodic 
layers, the existence or non-existence of ~- and ~-POs 
amongst  ~-POs decides which special form the vic ini ty  
condition (part 2) takes. Let  all the a -POs  ~,~+~a be 
known for a par t icular  lo. The ~,~2 m a y  then  be 
deduced from them. As all layers are equivalent,  at  
least one ~,~+~c~ is bound to exist. Thus we can 
dist inguish 3 categories, depending on the ~- or ~-POs 
amongst  the ~,p+~.  

Definition 
Category I :  There exists (at least) one ~, ~+~ ~, as well 

as (at least) one ~,~+1~. (See Figs. 3(b) and 4(b)). 
Category I I :  There exists (at least) one p,p+l~, but  

no ~, ~+1~. (See Figs. 2(b)). 
Category I I I :  There exists no ~,~+1~, bu t  (at least) 

one ~, ~+~. (See Fig. 5(b)). 

Only in Category I are there ~-POs amongst  the 
/t-POs. F rom the vic ini ty  condition it  follows for 
categories I and I I  tha t :  

(a) all  pairs of adjacent  layers are equivalent ;  
(b) if there exist P O s  p,p+l~c and/bu t  no ~ , ; + ~  for 

one par t icular  value lo, then  there exist q,q+l~ 
and /bu t  no q,q+~ for any  value q, respectively. 

For category I I I  it  follows tha t  the pairs LpLp+t and 

* S o m e  p a r t i a l  o p e r a t i o n s  will  a l m o s t  a l w a ys  be  le f t  o u t  of o u r  
c o n s i d e r a t i o n s  as  i r r e l e v a n t .  E .g .  in m a n y  s t r u c t u r e s  a t  l eas t  
some  of t he  a t o m s  m a y  be  r e g a r d e d  as sphe r i ca l ly  s y m m e t r i c a l  
w i t h i n  t h e  l imi t s  of a c c u r a c y .  T h e  c o r r e s p o n d i n g  p a r t i a l  
r o t a t i o n s  b y  a r b i t r a r y  angles  t r a n s f o r m i n g  o n l y  one  p a r t i c u l a r  
a t o m  in to  i tself  will  be  e n t i r e l y  i r r e l e v a n t  to  t h e  s t r u c t u r e .  
Bes ides ,  p a r t i a l  o p e r a t i o n s  r e f e r r i n g  to  a p a r t  of a l a y e r  will  
a l w a y s  be  c o n s i d e r e d  as  i r r e l e v a n t ,  if t h e r e  ex i s t s  a P O  
r e f e r r i ng  to  t h e  s a m e  l aye r ,  a n d  c h a r a c t e r i z e d  b y  t h e  s a m e  
t r a n s f o r m a t i o n .  

Lp+lLp+~ cannot be equivalent .  The existence of 
a p+~,p÷~.T would contradict  the vic ini ty  condition 
(part 2) so tha t  the existence of a ~+1,p+20 follows. 

From the vic ini ty  condition it  follows for category 
I I I  tha t :  

(a) there are two sets of pairs of adjacent  layers:  
the pairs L~.,,-1L~n and L2nL~n+l. 
Pairs belonging to the same set are equivalent ;  

(b) if there exists a P O  ~,p+l~, but  no p,p+l~ for one 
par t icular  value p, then there exists a P O  q,q+le 
but  no q,q+~ for any  value q. 

The existence or non-existence of T- and Q-POs in 
structures of the 3 categories is summarized in Table  2. 

Table 2. ~ - a n d  ~-POs in the 3 categories 
C ~ e g o r y  p q  v p q  o 

_ _  

I p r e s e n t  p r e s e n t  
I I  p r e s e n t  a b s e n t  

I I I  p r e s e n t  if p - q = 2n  p r e s e n t  if p - q----- 2n  + 1 

Now, let a structure be buil t  of equivalent  layers 
(in the sense defined above) and let the vicini ty  con- 
dit ion hold. Then the question arises if it is possible 
to decide, from the knowledge of all P O s  ~,~+1~ 
(for one par t icular  value p only), whether  the cor- 
responding structure is a ful ly ordered structure 
(i.e. any  t ransformat ion characterizing a P O  is a 
symmet ry  operation of the structure) or an OD- 
structure (i.e., there exist proper POs,  with charac- 
terizing t ransformations which are not  symmet ry  
operations of the structure). 

From the p,p+la and their  inverse P O s  p+l,~a -1 all 
P O s  p, p/t and p+1,~9+1~ m a y  be deduced (~,~/t= 
p, p +1 a ' .  p +1, p e-1 and p +1, p +1 )~ = p +1, p O "-1.  p, p +10 J ,  where 

denotes one par t icular  P O  and a'  any  one P O  
converting Lp into Lp+l). If  there is either a ~,pT 
amongst  the ~,p/t which doesn' t  posses a continuat ion 
p+l,~+lT, or a p,r+l~ without  a continuat ion ~+1,~,  
then  the structure is an OD-structure  (and at least 
one of these two possibilities is realized in any  possible 
OD-structure either for the par t icular  value p chosen 
or for p ' = p + l ) .  The category to which the OD- 
structure belongs m a y  be found according to the 
definit ion of categories (see above) and depends on 
the existence or non-existence of T- and ~-POs amongst  
the ~,~+1~, with one exception: If there exists a 
p,p+l~o but  no p,p+lT, then the OD-structure  belongs 
either to category I or to category I I I ,  depending on 
whether  there exists a cont inuat ion ~,~+1~ ~ p+l,p~ 
or not. In  the former case the pair  of adjacent  ' layers '  
L~o-lLio ought to have been called one layer  according 
to the rules. The structures indicated by Figs. 3(b) and  
4(b) described by means  of single layers as indicated 
in Fig. 5(b) are examples of tha t  kind. 

The vic ini ty  condition (part 2) m a y  now be special- 
ized to read as given in Table 3 for the different 
categories of structures consisting of equivalent  layers. 
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Table 3. Vicinity condition (part 2) 
Category (Lp_l, Lp) equivalent to (Lq_l, Lq) 

I, I I  for arbi t rary values p, q 
I I I  for p, q both odd or both even 

4. Special ordered OD-s t ruc tu res .  Twinning  

Although not only the layers but also corresponding 
pairs of adjacent layers of the different structures of 
one family are equivalent, different structures in a 
family differ at least in some triples, i.e. sets of three 
adjacent layers. Obviously, there is (potentially) an 
infinite number of ordered (i.e. periodic) members of 
any OD-family, but only very few with the property 
that  all triples are equivalent. These will be called 
OD-structures with a maximum degree of order. 

We have to expect the formation of disordered 
OD-structures if, at the temperature of growth, 
differences in the energy of interaction between the 
outer layers of different kinds of triples are small 
compared with kT; if this energy is large compared 
with kT, we have to expect that  ordered OD-structures 
be formed, especially structures with a maximum 
degree of order. Actually, in a number of cases of 
polyn~orphism the polymorphs are family members 
with a maximum degree of order; this is the case for 
the cubic face-centred and simple hexagonal structures 
of close-packed spheres, for zincblende and wurtzite, 
for the normal and the rhombohedral forms of graphite 
and others. Buerger (1945) has given a genetic ex- 

planation of the formation of twins, starting from 
energetic considerations very similar to those under- 
lying the geometrical theory presented here. He has 
pointed out that  a certain class of twinned structures 
may be described as consisting of two equivalent 
ordered parts which have one layer--the boundary 
layer--in common. Such twins we might call OD- 
twins. This name is justified, because any such OD- 
twin may be regarded as an OD-structure consisting 
either of layers all equivalent or of two kinds of layers. 
The 'boundary layer' is then a layer in the sense used 
in this paper. We would expect the twin individuals 
of such OD-twins to have OD-structures of maximum 
degree of order. The possibilities of twinning of this 
kind may then be deduced from the knowledge of 
possible OD-groupoids, consisting either of equivalent 
layers (i.e. the 333 referred to in this paper) or of two 
kinds of layers (which have not, so far, been deduced). 
This procedure seems to us more promising than the 
one proposed by Holser (1958). (See also Dornberger- 
Schiff, 1959(b)). 

Particularly interesting are the polymorphie forms 
of SiC. They are members of the same OD-family but 
none of them is a structure with maximum degree of 
order. The many ordered, i.e. periodic, polymorphs, 
some of which have extraordinarily large periods, 
have been explained as consisting of a disordered 
(finite) stack of layers the sequence of which is repeated 
periodically because of the spiral growth of the struc- 
ture. Other ordered (or nearly ordered) OD-structures 

Fully ordered structures 
(The whole structure uniquely deter- 
mined by the structure of a single layer 
and relative ar rangement  of a pair of ad- 

jacent layers; no proper POs  exist) 

OD-structures with periodic 
arrangement  of layers 

................................................ i ............ 
I 

OD-structures with maximum 
degree of order 

Structures for which vicinity 
condition holds 

I 
1 

O D-structures 
(A whole family of structures compatible 
with the structure of a single layer and 
relative arrangement  of a pair of adja- 

cent layers; proper POs  exist) 

I 
I 

OD-structures with non-pe- 
riodic arrangement  of layers 

OD-twins 

Periodic OD-structures with- 
out maximum degree of order 
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which do not  possess m a x i m u m  degree of order have 
been observed. They are l ikely to occur if there is a 
re la t ively high energy of interact ion between layers 
more than  one removed. An example  of this kind seems 
to be the structure of sam.~rium, a close-packed 
ar rangement  with a rhombohedra l  sequence of layers 
A B C B C A C A B  ABC . . . .  (Donne, Rundle,  Smith  & 
Spedding, 195~). This sequence evident ly  does not 
correspond to m a x i m u m  degree of order. Al though 
the authors assume twinning this does not seem to us 
to be proved beyond doubt.  

Amongst  the structures for which the vic ini ty  con- 
dit ion holds, we thus dist inguish the types of struc- 
tures given in the diagram p. 173. 

OD-twins thus should be considered as OD-structures 
of m a x i m u m  degree of order, as far as the structure of 
the twin- individual  is concerned, but  as non-periodic 
OD-structures inasmuch as the twinning violates the 
periodicity. Obviously, all the in termedia te  stages, 
from the single twin to mult iple  twinning,  micro-twins 
and the ent irely s tat is t ical ly  disordered structures m a y  
be possible. 

5. P o s s i b l e  P O s  in  O D - s t r u c t u r e s  a n d  c o m b i n a -  
t ions  of t h e m .  P o s s i b l e  OD-~, roupoid  fami l i e s  

We have discussed above some l imitat ions on the 
operat ions which m a y  occur as POs.  Besides these 
we m a y  state:  

Only 'crystal lographic '  operations are possible as 
/t-POs because the ppa for a given p form a plane 
space group. Only those combinations of / ] -POs known 
from space-group theory m a y  occur. Thus only POs  
corresponding to the s y m m e t r y  elements present in 
the 80 plane space groups are admissible. They are 
listed in Table 5 according to the t ranslat ional  net. 
Translat ional  components parallel  to c cannot occur. 

The possible a -POs  are l imited in a similar  way 
by  the periodici ty of a pair  of layers, postulated by 
the vic ini ty  condition (part 1); those compatible with 
a given net  m a y  differ from the /t-POs compatible 
with the same net  only in their  t ransla t ional  compo- 
nents, and  tha t  in two respects: 

(1) 

(2) 

The z-coordinate must  be t ransformed by  a a - P C  
in such a way tha t  one layer is t ransformed into 
the adjacent layer. 
Whereas  in the case of 2-POs the t rans la t ional  
components in the x and y directions must  have 
values 0 or ½, a rb i t ra ry  values of these components 
m a y  occur in the case of a-POs.  (Examples of 
glide planes with components ¢ 0  and ~=½ oc- 
curred in the OD-examples  of categories I, I I  and 
I I I .  See Figs. 2(b), 3(b), 4(b) and 5(b)). 

Thus  the relations given in Table 4 hold. 

Table 4. Relation between permissible ~.- and (~-POs 

To any possible /LPO there are possible a -POs 

v-PC x , y , z - + x ' , y ' , z "  x , y , z - * x ' + r , y ' + r , z + l  
Q-PO x ,  y ,  z --> x ' ,  y ' ,  ~" x ,  y ,  z --> x ' + r ,  y ' + s ,  1 - - z  

where r and  s denote fractions, and the uni t  in the 
c-direction is su i tably  chosen. 

As symbols for such P O s  generalizations of the 
in ternat ional  space-group symbols  have be3n proposed 
(Dornberger-Schiff, 1956, 1959a and  c). 

As we know, the symbols 21, 31, 32 denote screw axes 
with t rans la t ional  components which are ½, 1 2 g, 3-, re-  
s p e c t i v e l y ,  of the cell length. Correspondingly, the 
symbols 2r, 2k, 33, 44 denote screw movements  with 
t ransla t ional  components r/2, ¼, 1, 1, respectively,  of 
the repeat  uni t  or of a uni t  defined as the distance 
between successive layers, measured in a direction 
perpendicular  to the t ransla t ional  vectors, respectively. 

Corresponding to the glide components ½- or (½, ½) 
of the glide planes a or n, respectively, a glide plane 
denoted by ar or nr, s should have glide components 
r/2 or (r/2, s/2), respectively. 

Table 5 gives the P O s  compatible with the different  
kinds of nets. 

We m a y  also note here a difference between the 
ar rangement  of operational elements* of P O s  in OD- 
structures and tha t  of symmet ry  elements in ordered 
structures:  In ordered structures parallel  s y m m e t r y  
elements occur in equidis tant  ar rangements  only. This 
rule no longer holds in OD-structures for operational  
elements which do not correspond to total  s y m m e t r y  
elements. As an example  we m a y  take the structures 
shown in Figs. 2(a) and 2(b) where twofold axes alter- 
nate  with glide planes. 

The 2-POs m a y  occur in 80 different combinat ions 
called the plane groups in three dimensions. The 17 
without  Q-POs m a y  give rise to OD-groupoids of 
categories I I  and/or  I I I ;  the 63 with Q-POs give 
OD-groupoids of category I (see Tables 6, 7, 8). To 

rq Fq Fq rq 

Fig. 6. OD-groupoid-family (see Fig. 2(b)) shown in full lines 
together with the superposition group (full lines and broken 
lines). 

. . . . . . . . . . . . .  

* We define the operational element of a PC in strict 
analogy to the definition of the operational element of a 
symmetry operation, i.e. the symmetry element. 
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Table 5. ~,- and (~-POs compatible  wi th  the di f ferent  Brava i s -ne t s  o f  the s ingle layer 
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Net 

General  

Rectanqulac 

~ri ~ t ~  _or..c_.e_nt..rt, d_. ") 

~aUGI~ 
Sequence of symbols: 

. ¢  l~, ¢ ) .u  ,~ . 

u.- ~ +b 
o) 

v : g - b  

H@xaoonol 

Sequence of symbols: 

~z,~r,g~,b,b ; h". 
~.L b 
j~ ' .t  b" 
e".t  h "  °'J 

I i (2) 

i 1 ( 2 )  

rn 1 (1) 

t, I (1) 

T 
I 1 ( m )  
I I (n )  

1 i (m) 

1 I (n)  

I I (a)  

, , i ( i )  

2, I (D  

T 
I I ( 2 )  I I 1 I (m) 1 1 

rn l ( I )  I I  1 1(a)  I I  
b I ( I )  1 I 1 1 ( u )  1 !  

I I (1)  m l  2 I ( I )  I I 

1 1  (1)  v I 2 I ( I )  1 I 

I 1 ( , 0  I I I I (I) 21  
I I (1),2 t I 

I 1 ( r . ) I  I 

T 
1 1 1 ( m )  1 1 I  

I 1 1 ( o )  I I I  

I 1 1 ( t ~ ) I i 1  

2 1 i ( 1 )  i 1 1  
2 I I (1) I I 1 

1 1 I ( 1 ) 2  I 1 

I 1 1  (1)2,  I I  

I 1 1 ( ~ ) I 1 1  

1 1 1 ( ~ ) 1 1 1  

1 1 ~ ( 2 )  1 1 1  

, - n l l  ( I )  I 1 1  
b 1 I ( 1 )  1 1 I  

I I I ( I )  m l  I 
I 1 1 ( I )  o 1 1  

I I 1 (3) 1 1 1 

1 1 I ( e )  1 1 I  

tr~Al 
, ,  

tr,#, i 
, 

n,, 2 I (1 )  

, I 1 2 

n j I (1)  I I 

1.1 (1)nr,  t 1 

, ,  ( , , ) , ,  

tr,l.t 
1 1 I ( 2 , 7 1  I 1 

nsj 1 I (1 )  1 1 1 

I 1 I ( l ) n c ~  I I 

,,,(::),,, 
I I I  1 1 1  

T 
, ,  (.r.) 

T 
I I (n . , )  

2 I ( I )  

T 
I I ( n ) I 1  

2 I ( I } I  I 

1 I ( I ) 2  u 1 

1 I  (4") 11 

T 
1 I I  (n, ,)1 I I  

2 1 1 ( 1 )  1 I i  
I 1 1 ( 1 ) 2  1 1 

1 1 I ( ~ )  1 1 1  
1 1 1 ( ~  1 1 1  

In addition operations must be considered in which the a and b directions o r -  in case of the square net also the u and 
v_-ore reversed; e. g 
I o(1) aswellosb1(1)orl 1(I)1uaswelo=1 l f i )  v I 

"J  In addition operations must be considered in which the 2. ~ ~" directions and correspondingly b, 12" b" change plcx:es e.g. 
b i l l 1 )  111  as well a s l b l  (I) 11I  a n d l l  b( I )  I I I .  

The indices r, s indicat ing t ransla t ional  components  of a - P O s  may ,  in special cases, be equal to 0 or ½. Thus  2rl(1) m a y  become 
21(1) or 211(1); no t  in all combinat ions  of )~- and  a - P O s  (OD-groupoids) are such specializations possible w i thou t  all P O s  be- 
coming improper  P O s  and  the  corresponding s t ruc ture  a ful ly ordered one. 

obtain  a complete list of all families of OD-groupoids, 
we have to take one plane space group after the other, 
and  combine with it  in tu rn  each a - P O  compatible  
with the respective net. As net  we have to take not  
only the net  required by the par t icular  plane space 
group, but  also more specialized ones compatible with 
the plane space group. In  this way all families of 
OD-groupoids have been obtained;  most of them even 

A C 14 - -  12 

more than  once, because the composition of ~-POs 
with a chosen a - P O  results in fur ther  a-POs.  Those 
combinat ions which au tomat ica l ly  lead to ful ly or- 
dered structures have, of course, to be left out of 
account. 

As symbol  of a fami ly  of OD-groupoids, we use a 
notat ion which allows ~- and  (~-POs to be recognized 
at  a glance, in analogy to in ternat ional  space-group 
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p s G ~  S - O D  

Triclinic 
Monoclinic I 
Monoclinic I I  
Orthorhombic  
Totragonal  
Hexagonal  

Table 6. Category I 

Monoclinic I Monoclinic I I  Orthorhombic Tetragonal  Hexagonal  

I 2 -- 1 2 
4 -- 10 4 6 

-- 8 11 11 6 

- -  - -  4 0  30 8 
_ _  - -  - -  2 4  - -  

. . . .  29 

5 10 61 70 

P S G  = System of plane space group of the  single layer. 
S - O D  = System of the  OD-groupoid.  

6 

24 
36 
78 
24 
29 

51 197 

p S G ~  S ' O D  

Monoclinic I 
Monoclinic I I  
Orthorhombio 
Tetragonal  
Hexagonal  

Table 7. Category I I  

Monoclinie I Monoclinic IX Orthorhombic Tetragonal  Hexagonal  

1 - -  2 1 1 
- -  3 3 3 2 

- -  4 4 1 

- -  ~ ~ 4 

. . . .  11 

1 3 9 12 

P S G =  System of plane space group of the  single layer. 
S - O D  = System of the OD-groupoid.  

15 

5 
11 

9 
4 

11 

40 

P S G \  S - O D  

Triclinic 
Monoclinic I 
Monoclinic I I  
Orthorhombic  
Tetragonal  
Hexagonal  

Table 8. Category I I I  

Monoclinic I Monoclinic II Or~horhombie Tetragonal  

1 2 4 4 

1 - -  4 4 

- -  3 6 9 

- -  - -  4 8 

Hexagonal 

9 

3 
7 
2 

20 

2 5 1 8  30 

P S G  = System of plane space group of the  single layer. 
S-  OD = System of the  OD-groupoid.  

20 
12 
25 
14 

5 
20 

41 96 

nomenclature. In the first line of the symbol, the 
symbol of the plane space group formed by the 2-POs 
of the OD-groupoid family is given, in the second line, 
in brackets { } the symbols of a set of a-POs v,v+la 
are put  down; only for families belonging to category 
I I I  where the set of a-POs v+l, v+2a may be of a kind 
different from the set v,v+la, a third line in brackets 
{ } contains the symbols of the set of v+l,v+2a. 

As we have already ~tated, arbi t rary translational 
components of a-POs (screw axes and glide planes) 
occur which are indicated by indices r, s, u, v etc. in 
the symbol of the groupoid family. In some of the 
groupoid families it  is possible to give special values 
to one or the other of these translational components 
(e.g. 0 or 1 to the corresponding indices) without the 
OD-character being lost. Then the number of positions 
of Lv+~ compatible with the positions of the Lq 
(with q<p) and the vicinity condition is in general 
reduced as compared with the corresponding general 
case. As an example the groupoid family 

P m m (2) 
P m m (2) and its special case {ns,9. c2 (22)} 

{ns,2 n2,r (22)} 

are shown in Figs. 7(a) and (b). 
The complete list, without special cases (which is 

to be published elsewhere) shows tha t  there are 333 
essentially different OD-groupoid families all in all; 
197 of category I, 40 of category II  and 96 of category 
III ,  Tables 6, 7 and 8 give the numbers of the OD- 
groupoid families specified according to the various 
symmetry systems of categories I, I I  and I I I ,  respec- 
tively. At the beginning of each line the symmetry  
system of the plane space group of the single layer is 
given. To understand the classification which is given 
at  the top of the columns, we assume to s tar t  with 
tha t  the translational components of a-POs are simple 
rational numbers. Under these circumstances a fully 
ordered structure may be obtained by superposing 
various members of the same family in such a way 
tha t  any pair of superposed structures has at  least one 
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In2,r 
li< > 

I (a) 

! 

i cz 

v 

t 

Pm m (2) Pm m (2) Fig. 7(b). OD-groupoid-family {ns, u c2 (22)} Fig. 7(a). OD-groupoid-family {ns,2 n2,r (22)} 

One unit cell is outlined; the POs 1,36 are shown. 

Projections on to a layer plane. The figures inside the rhombs give the index of the respective layer. 

layer in common (see Fig. 6). This 'superposition- 
structure' will have a space group which may  depend 
on certain features of the indices characterizing the 
translational components--e.g, whether even or odd--  
but with a corresponding point group which is not 
dependent on the indices. The symmetry  class of this 
point group is called the System of the OD-groupoid. 

If the translational components of all ~-POs are 
rational, the Fourier transform plotted in reciprocal 
space will show sharp points identical in position and 
weight with the reciprocal-lattice points of the super- 
position structure just defined. These sharp points can 
in many  cases be recognized in the X-ray pattern and 
the superposition structure (or at least its space group) 
deduced. They are a common feature of X-ray dia- 
grams of different OD-structures belonging to the same 
family. The symmetry  of an ordered member of an 
OD-family may, however, be far lower and even lower 
than the symmetry  of the plane space group. Thus the 
observation made in some cases (see e.g. Dornberger- 
Schiff, 1957) that  some classes of reflections--e.g. 
those of even layer l ines--show higher symmetry  than 
the others, can be explained. 

The Fourier transforms of OD-structures generally, 
and in particular their characteristic features corre- 
sponding to the different OD-groupoid families, will 
be the subject of a later paper. 

Furthermore, the theory of OD-structures consisting 
of two or more different kinds of layers, as well as the 
theory of OD-structures consisting of rods periodic in 
one dimension only (all equivalent, or of two or more 
different kinds) has still to be worked out. 

The authors wish to express their sincere thanks to 
Prof. B. N. Delaunay for some most interesting dis- 
cussions, which led us to alter in some ways the presen- 
tation of the matter, to Dr tI. F. Taylor for reading 
the manuscript very carefully at an intermediate stage 
and suggesting improvements of the English, and in 
particular to Mrs Christa Krause for her constant help 
in the final stages of preparation of the manuscript. 
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